
CurlCrawler:A framework of CurlCrawler and Cached
Database for crawling the web with thumb.

Dr Ela Kumar#,Ashok Kumar$

School of Information and Communication Technology, Gautam Buddha University, Greater Noida
$ AIM & ACT.Banasthali University,Banasthali(Rajasthan.)

Abstract-WWW is a vast source of information and search engines
are the meshwork to navigate the web for several purposes. It is
problematic to identify and ping with graphical frame of mind for
the desired information amongst the large set of web pages
resulted by the search engine. With further increase in the size of
the Internet, the problem grows exponentially. This paper is an
endeavor to develop and implement an efficient framework with
multi search agents to make search engines inapt to chaffing using
curl features of the programming, called CurlCrawler. This work
is an implementation experience for use of graphical perception to
upright search on the web. Main features of this framework are
curl programming, personalization of information, caching and
graphical perception.

Keywords and Phrases-Indexing Agent, Filtering Agent, Interacting
Agent, Seolinktool, Thumb, Whois, CachedDatabase, IECapture,
Searchcon, Main_spider, apnasearchdb.

1. INTRODUCTION
Information is a vital role playing versatile thing from
availability at church level to web through trends of books.
WWW is now the prominent and up-to-date huge repository of
information available to everyone, everywhere and every time.
Moreover information on web is navigated using search
engines like AltaVista, WebCrawler, Hot Boat etc[1].Amount
of information on the web is growing at very fast and owing to
this search engine’s optimized functioning is always a thrust
area that makes it as a buzz word of research area. At the
ground level, a Search Engine employs Crawlers, which
traverse the web by downloading the documents and following
links from page to page. Since, Crawlers gather data for
indexing; these form the most important part of a Search
Engine. The aim of this paper is to raffle a framework, which
will elevate Crawler’s dexterity to surmount the way the
Internet can be used to snag more and more information and
services [2,3,4].
This paper presents design and implementation of CurlCrawler,
featured with locally resource utilization capacity to deliver
more personalized, graphical and cached driven information
from the web. This crawler is destine to present a framework,
which will convince the chaffing experience while searching
on the Internet.1

2. RELATED WORK
Although information about the functioning issues of
professional search engines is not available publicly and if
available then it is only up to concept level [13]. This is a
business driven scenario owing to which we find out only

about basic modules of search engine functioning and these
essential modules are (see Fig.1)[9,10].

Fig.1: Components of Information Retrieval System

Store: It stores the crawled pages. Its main functions are:
 To check whether a page has already been created
 To store the contents of crawled pages
 To keep track of some relevant information about its

stored pages.

Frontier: This component deals with the retrieval of new
pages. Its main functions are:
 To keep track of the URLs that have to be crawled by the

agent,
 To actually fetch the content of the URL to be crawled
 To parse the retrieved URL.

Controller: It overseas all the communications between agents
and works as a reliable crash failure detector. The reliability
refers to the fact that a crashed agent will eventually be
distrusted by every active agent. It also determines through
delegation function as to which agent is responsible for each
single URL. The delegation function also partitions the web
domain in such a way that every running agent is assigned
approximately the same number of URLs.

Ela Kumaret al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1700-1705

1700

3. SOFTWARE ARCHITECTURE
Software Architecture is the set of structures needed to reason
about the system, which encompasses the set of significant
decisions about the organization of the developed framework
including the selection of the structural elements and their
interfaces by which the system is composed and an
architectural style that guides this organization. Software
architecture of developed framework employs different
software elements as described below[6,8].
3.1 Architecture of CurlCrawler.
3.2 Cached database architecture.
3.3 Interacting agent architecture.
3.1 Architecture of CurlCrawler

Fig.3.1: Architecture of CurlCrawler

Main_spider: is an agent that crawls the web for information
of URL of the website, Title of the website, Meta keyword
used up to three or four levels for website, Meta keyword
description used up to three or four levels for website, Website
keywords with one word pattern, Website keywords with two
word pattern, Website keywords with three word pattern,
Website context, Links on website, Links visited on website,
Content to be cached, Date and time on which cached by,
Information about hosting server, Information of registrant,
Additional information about website owner, Additional
information about website, Website link filed anywhere else in
our database, Total number of visitors, Website created on,
Website updated on and already crawled or not. All of this info
is indexed and stored to database using indexing software agent
deployed. This agent collects and creates an indexed database
using the following modules[5,7].

Modules Description
Config is responsible for database connectivity.

Includes

employs imageclass, webthumb and IEcapture sub
modules that generate thumb for given URL’s home
page and sends this to Thumb module to save this as
an image in Cache folder.

Thumb
is responsible to send thumb for that URL as an
image from cache folder to database for indexing
and storage.

SEOLinktool

uses ClsUltimateSEO and Block sub modules to
fetch title, meta keyword description, cache
contents, content latest and keyword with different
patterns.

WhoIs

uses Utils, Main and Example sub modules to fetch
whois information like registrant, server IP
information about for that URL. This also sends
fetched information to database module for storage
and indexing.

3.2 Cached database architecture

Fig. 3.2: Architecture of Cached Database

Index: is a filtering module that provides user perception and
interest to be used to fetch result from database server.

3.3 Interacting agent architecture

Fig.3.3:Architecture of Interacting Agent

Ela Kumaret al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1700-1705

1701

Interacting Agent: gets keyword(s) to search indexed
database and expel result page using the following sub
modules:

Modules Description
Config is responsible for database connectivity.

Header
creates header of the result page or user interacting
page

Footer
creates footer of the result page or user interacting
page.

WhoIs
Fetches database to read all personalized
information stored in context of keyword.

Cache
Fetches database to read cache copy of website
stored in context of keyword searched.

Searchcon
key module that fetches database for rest of the
information specially image using thumb and cache
sub modules in context of keyword entered.

Display
is responsible to merge result and layout generated
by above explained modules.

4. PERFORMANCE

 An estimated and approximate performance
analysis can be done to compare the conventional search
strategies with the developed one. With the increase in the
availability of web pages on the Internet, the major problem
faced by the present search engine is difficulty in information
retrieval [11]. It is problematic to identify the desired
information amongst the large set of web pages resulted by the
search engine. With further increase in the size of the Internet,
the problem grows exponentially (see Fig.4.0). The number of
web pages given as the result of a user initiated will definitely
be more.

Quantity Vs Internet Size

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11

Download Quantity

Internet Size

Fig.4.0: Download Quantity vs. Internet Size.

This increase in the quantity on one hand, leads to decrease in
the quality (see Fig.4.01) on the other. The framework given in
this work, effectively takes into consideration the above
mentioned issues. Being a context driven search strategy, use
of local resources i.e. curl programming features, reduced
chaffing owing to more information like thumb, caching the
framework is a key step for search mechanism with less degree
of chaffing.

Quality Vs Internet Size

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11

Download Quality

Internet Size

Fig.4.01: Download Quality vs. Internet Size

In terms of performance parameters like quantity, quality,
relevance with the keyword searched and the network traffic;
developed framework holds an edge above the conventional
search strategies. The results are more pertinent to the user’s
interest owing to more focused, relevant, personalized, cached
and graphical.
4.1 Experimental Screenshots
A series of user interfaces of developed framework with
deployed CurlCrawler(see Fig. 4.1, 4.2, 4.3, 4.4) while
rendering for a keyword “job” is shown below:

Fig.4.1: Home Interface

Fig.4.2:Thumb Created Result

Ela Kumaret al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1700-1705

1702

Fig.4.3:WhoIs Info Result

Fig.4.4:Cache Result

4.2 Analysis
This framework is running on an acer machine, a workstation
with 685MHz processor, 12 GB of RAM,840 GB of local disk,
100 Mbit/sec Speed Internet, Windows Server 2003 and xampp
1.7.3.
In this paper, experimental statics are presented of 9 days only
owing to compare with other existing search systems like
Google, about this request issued are published in literature.
The Google crawler is reported to have issued 26 millions
HTTP requests over 9 days i.e. on an average 33.5 docs/sec
and 200KB/sec[14,15]. Performance of any information
retrieval system can be analyzed using parameters like
coverage and user perception that are presented below:
4.2.1 Coverage
Coverage of a search engine points towards a search engine’s
crawl speed and index size. In case of developed framework,
CurlCrawler made 68.5 millions HTTP requests in 9 days,
achieving an average download rate of 99.121 docs/sec and
1488.59 KB/sec. Hence, this work with local resource
utilization is a considerable optimization mark and represented
as below (seeFig.4.2.1):

Coverage Chart

0

20

40

60

80

1 2 3 4 5 6 7 8 9

Days(no.)

R
e
q
u
e
st

s

M
a
d
e
(M

ill
io

n
s
)

Google

CurlCrawler

Fig.4.2.1 Coverage Chart

4.2.2 User Perception
User perception points towards user experience with developed
framework. In this work, key points towards user perception
are:
GUI perception
Out of 68.5 million requests made, 1.36 millions requests do
not return thumb i.e.1.985% and 0.62 millions requests return a
thumb that is not clear up to the identifying mark i.e.
0.905%(see Fig.4.2.2.0).

0

10

20

30

40

50

60

70

GUI Perception Chart

Statics(Millions) 68.5 1.36 0.62

Requests Made Without Thumb Unreadable

Fig.4.2.2.0 GUI Perception Chart

Personalization degree
Out of 68.5 million requests made , 0.14 millions requests do
not return personalization of information like registrant,
hosting info etci.e.0.204%.(see Fig.4.2.2.1).

0

10

20

30

40

50

60

70

Personalization Chart

Statics(Millions) 68.5 67.36 0.14

Requests Made Personalized Without WhoIs

Fig.4.2.2.1 Personalization Chart

Hence, these are the wrinkled points of this work that were not
expected to be happened.

5. CONCLUSION
This framework renders the web for additional information like
thumb, cache, registrant and higher degree of context to
provide more interesting perception from users interacting
with. This is a part of ongoing research work, to utilize
advance features of programming in crawling the web up to
maximum extent. Owing to the lengthy size of coding work,
this is not possible to present coding or technical details of all
the modules of developed framework. But work is incomplete
without functioning details of the basic modules i.e. index
module and main_spider module.

Ela Kumaret al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1700-1705

1703

5.1 Index
Basic technical details like pseudo code and data structures are
given below:
Individual Data Structures Used:

Name Type Usage
SearchFrm Form To create result page
SearchTxt Textbox To enter query

SearchBtn
Submit
Button

To search result from database

Type String
To store corresponding Id of
event occurred

Cache Link Button To print cache result
WhoIs Link Button To print personalized result
Thumb Link Button To display thumb result

Pseudo code:

5.2 Main_spider
Basic technical details like pseudo code and data structures are
given below:
Individual Data Structures Used:

Name Type Usage

url String To store url value

responseTitle String
To store fetched title
corresponding to url value

metaContent String
To store fetched meta tags
corresponding to url value

urlContents String
To store fetched url contents
corresponding to url value

keyContent String
To store fetched keywords
corresponding to url value

whoIsInfo String
To store fetched whois
information corresponding to url
value

registrantInfo String
To store fetched registrant
information corresponding to url
value

thumbName String
To store path of created thumb
corresponding to url value

Common Data Structures Used:

 Name Type Usage Degree
web_contents Table To store Complete

information
22

Pseudo code:
read url;
getAllDetailsInDb(url);
function getAllDetailsInDb(url)
{
 responseTitle = getTitle(url);
 metaContent = get_meta_tags(url);
 urlContents = getURLcontents(url);
 if(count(trim(urlContents)) <= 200)
 {
 urlContents = file_get_contents(url);
 stripContents = urlContents;
 }
 stripContents = strip_tags(urlContents);
 keyContent =
fetchKeywordContents(url,stripContents);
 oneWordTexts = "";
 foreach(keyContent["_1"])
 {
 oneWordTexts =Val;
 }
 twoWordTexts = "";
 foreach(keyContent["_2"])
 {
 twoWordTexts=val;
 }
 $threeWordTexts = "";
 foreach($keyContent["_3"])
 {
 threeWordTexts =Val;
 }
 whoIsInfo = getWhoIsInfo(url);
 thumbName = makeThumbnel(url);
 whoIsNServer = "";
 foreach(whoIsInfo['regrinfo']['domain']['nserver'])
 {
 whoIsNServer=value;
 }
 registrantInfo =whoIsInfo['regyinfo']['registrar'];

 whoIsFullInfo = "";
 foreach(whoIsInfo['rawdata']=> value)
 {whoIsFullInfo=value;}
 parsedDate = date("Y-m-d H:i:s");
 rsAlreadyQuery = mysql_query(AlreadyQuery);
 if(rowAlreadyQuery =
mysql_fetch_assoc(rsAlreadyQuery))
 {Update existing record;}
 else
 {Insert new record;}
}

Finally, the complete framework along with implementation
details of various agents used is discussed. A crawler executing
in a Multi-Agent environment is designed and developed to
expel a search that is more focused, relevant, personalized,
cached and GUI driven. An extension to the developed
framework is also going on that uses an additional agent named
Learner Agent, which could observe, analyze and imitate the
user. It could formulate the right set of keywords and
proactively trigger a new query on its behalf[12].

Create header;
Create form with one textbox, one submit button, one cache
and one thumb link button;
if(type == 'whois')
{
 call functions of module 'whois.php';
}
if(type == 'cache')
{
 call functions of module 'cache.php';
}
if(type == 'searchbtn')
{
 call functions of module 'searchcon.php';
}
Create footer;

Ela Kumaret al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1700-1705

1704

6. REFERENCES
[1]. Agichtein et al.(2006), “Learning user interaction models for predicting

web search result preferences.”, SIGIR'06.
[2]. Google (2008), Webmaster Guidelines.http:// www.google. com/support/
[3]. Yahoo Search Content Quality Guidelines (2008).http:// help. yahoo.

com/l/us/yahoo/search/basics/basics-18.html
[4]. Kobayashi, M. and Takeda, K. (2000). "Information retrieval on the

web". ACM Computing Surveys (ACM Press)
[5]. Cho,Junghoo; Hector Garcia-Molina (2002). "Parallel cawlers".

Proceedings of the 11th international conference on World Wide
Web.Honolulu, Hawaii, USA: ACM.pp. 124–135.
doi:10.1145/511446.511464. ISBN 1-58113-449-5.

[6]. Zeinalipour-Yazti, D. and Dikaiakos, M. D. (2002). Design and
mplementation of a distributed crawler and filtering processor. In
Proceedings of the Fifth Next Generation Information Technologies and
Systems (NGITS)

[7]. Pant, Gautam; Srinivasan, Padmini; Menczer, Filippo (2004). "Crawling
the Web". in Levene, Mark; Poulovassilis, Alexandra. Web Dynamics:
Adapting to Change in Content, Size, Topology and Use. Springer.
pp. 153–178. ISBN 9783540406761.

[8]. Shkapenyuk, V. and Suel, T. (2002). Design and implementation of a high
performance distributed web crawler. In Proceedings of the 18th

International Conference on Data Engineering (ICDE), pages 357-368,
San Jose, California. IEEE CS Press.

[9]. Edwards, J., McCurley, K. S., and Tomlin, J. A. (2001). "An daptive
model for optimizing performance of an incremental web crawler". In
Proceedings of the Tenth Conference on World Wide Web (Hong Kong:
Elsevier Science)

[10].Cho, J.; Garcia-Molina, H.; Page, L. (1998-04). "Efficient Crawling
Through URL Ordering". Seventh International World-Wide Web
Conference. Brisbane, Australia.

[11].Chakrabarti, S., van den Berg, M., and Dom, B. (1999). Focused crawling:
a new approach to topic-specific web resource discovery. Computer
Networks, 31(11–16):1623–1640.

[12].Shestakov, Denis (2008). Search Interfaces on the Web: Querying and
Characterizing. TUCS Doctoral Dissertations 104, University of Turku.

[13].AltaVista Search Contents http://www. infotoday. com/
searcher/may01/liddy.htm

[14].Sergey Brin and Lawrence Page. The anatomy of a large-scale pertextual
Web search engine. In Proceedings of the Seventh nternational World Wide
Web Conference, pages 107--117, April 1998.

 [15].Z.Smith. The Truth About the Web: Crawling towards Eternity. Web
Techniques Magazine, 2(5), May 1997.

Ela Kumaret al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1700-1705

1705

